

Analytics to the rescue How to blend asset hierarchies with reports

Dr Pierre Marchand, Industry Consultant 24-Sep-2014

Manage Asset Integrity

One of the most complex challenges **across industries**

Keep assets operational for as long and economically as possible ...

...without sacrificing reliability or safety.

Traditional focus :

- reactive maintenance
- planned maintenance
- proactive maintenance
- predictive maintenance

Predictive Maintenance

Goal : predict when maintenance should be performed

How : determine condition of in-service equipment using equipment historical data

Why?

- Cost savings, tasks are performed only when warranted
- Increased equipment lifetime, less incidents & optimized spare parts handling

Google books Ngram Viewer

Graph these comma-separated phrases: predictive maintenance,reactive maintenance,planned maintenance,r case-insensitive											
between	1925 an	d 2008	from the corpus	American English	▼ with s	moothing of 3 🔻	. Search lots o	fbooks			
0.000	^{00550%} T										
0.000	00500% -										
0.000	00450% -								\sim	1	
0.000	00400% -								\sim		
0.000	00350% -									<u> </u>	
0.000	00300% -								M		redictive maintenance
0.000	00250% -							~		<u> </u>	
0.000	00200% -								/	p	lanned maintenance
0.000	00150% -						\sim		/		
0.000	00100% -				\wedge	~~~	~				roactive maintenance
0.000	00050% -				/	~		\int		r	eactive maintenance
0.000	00000%	193	30 19	40 19	50 19	960 19	070 19	80 19	90 20	00	

Predictive Maintenance Focused on Structured Data

Focused solely on structured data

<u>Structured data</u> is defined as data that resides as records within database tables or is streamed according to a standardized protocol

For example :

- > using vibrations, temperatures, pressures, etc
- > to support reliability modeling (assess past reliability)
- ➤ and predict future reliability

Analyze Root Causes

'Predictive' is not an exact science

Too many scenarios

Numerous scenarios Numerous interpretations Results difficult to use

Uncertainty builds up

TERADATA.

Uncertainty builds up

What about unstructured ?

Inspection Reports Maintenance Logs Survey Reports Notes, etc

How do I blend unstructured & structured?

Text analytics

The BMW I bought to replace my Mercedes is a great car

... which one is a great car?

my Mercedes is a great car

The BMW ... is a great car

The new compressor I installed to replace previous compressor is performing well

... which one is performing well?

previous compressor is performing well

The new compressor ... is performing well

TERADATA.

Model Mechanics and Objective

- Each document is a random mixture of corpus-wide topics
- Each word is drawn from one of those topics

David Blie, communications of the acm | april 2012 | vol. 55 | no. 4

TERADATA.

Ideal Blender takes advantage of both Structured **and Unstructured**

A High Level Review of Common Blenders

18

Text Mining: Capabilities

TERADATA.

¹⁹ machine learning, and linguistics.

Text Mining Process: An iterative process *

Analyzing results Mapping/Visualization Result interpretation

* Presentation of Michel Bruney/ Text Mining Process

20

Traditional Process

Excellence...

ATM - Cash Machines

Situation

Millions of ATMs, kiosks, POS devices equipped with sensors to monitor device health in 180 countries

Problem

- Need more predictive failure rules for proactive design and repair
- Rule generation on spreadsheets take 6 months to plan
- Break fix tracking expanding to 1-2M devices

Solution

Aster improved device failure prediction by using all available data **structured and unstructured**

Impact

- New algorithms developed in 3 weeks
- Aster finds +2X more break fix predictions
- Scheduled maintenance increases uptime

Predicting Failures – Enhanced Approach

Conclusion

Enhance maintenance predictions by **blending data:**

- 1. Sensor data (structured)
 - Vibrations, temperatures, pressures etc

2. Maintenance data (structured)

- Maintenance schedule & equipment
- Mean Time Between Failure (MTBF)
- Mean Time To Repair (MTTR)
- Mean Time To Failure (MTTF)
- Failure In Time (FIT)

3. Maintenance data (unstructured)

- Maintenance logs
- Maintenance reports
- Inspection reports

How?

Identify characteristics affecting downtime before failure occurs. Enhance failure predictions

Goal

- Reduce downtime
- Align crew competence levels with equipment failure rates
- Ensure there is enough spending on proactive maintenance

25 © 2014 Teradata

